![]() |
【字体:小 大】 | ![]() |
![]() |
大功率弧焊逆变电源的IGBT保护技术 | |
http://www.dykf.com 2009/1/10 电源开发网 | |
Abstract:The reasons of IGBT damaged in application are explained by analyzing structure and safety work areas of IGBT. The fitting measures to protection to the IGBT of the arc-welding inverter power are also carried by using the hardware electric circuit and the controlling procedures of singlechip. These measures above are proved to be effective Keyword:IGBT protection the arc-welding 1 引 言 ![]() ![]() IGBT的工作原理:IGBT由栅极电压正负来控制。当加上正栅极电压时,绝缘栅下形成沟道,MOSFET导通,相当于 ![]() 2.2 IGBT安全工作区 在IGBT开关过程中,大电流和大电压的重叠造成主要的功耗,同时承受较高的di/dt和dv/dt即电流电压应力。特别是运行在PWM硬开关状态下,这是影响可靠性的重要原因。为了保证其安全可靠的工作,不仅有电流电压的限制,还必需使其动态过程的运行轨迹在安全工作区内。如图2所示,正偏安全工作区FBSOA是指栅极加正向电压时的安全工作区,对应于导通状态。三条边界分别对应允许电流、允许电压和允许功耗。随着导通时间增长,功耗和温升增加,安全工作区缩小。 ![]() IGBT关断时为反向偏置,对应安全工作区为反偏安全工作区RBSOA。除了电流电压边界外,另一边界为器件关断后的重加电压上升率。因此,电压变化率越大,安全工作区越小。实际上,这就是因为IGBT动态擎住效应的限制的缘故。所以在弧焊逆变电源的设计中,限制过电流和过电压、改善器件的运行特性以及降低功耗,都有重要的意义。在不同的工作状态下,保证IGBT在安全工作范围内并处于较好状态下,是提高整机可靠性的关键技术。 3.IGBT的保护措施 由于其结构和安全工作区知IGBT的可靠与否主要由以下因素决定: 1、栅极与发射极电压 2、集电极与发射极电压 3、流过集电极的电流 4、IGBT的结温 以上的四个因素在工作环境恶劣的弧焊逆变电源中都是需要注意的,尤其是第二项和第三项是我们在设计保护电路中重点考虑的内容。 3.1 IGBT栅极的保护 IGBT的栅极-发射极驱动电压 ![]() ![]() ![]() ![]() 3.2 集电极与发射极的过压保护 弧焊逆变电源进入焊接状态时,输出端即从空载转入接近短路状态,这时要求输出电流必须处于所需要的恒定状态。理论上,采用恒流闭环控制系统即可以控制电源的短路电流,但实际短路时,输出电压很低,即IGBT的工作脉宽很窄,才能保证输出电流恒定,这就造成了IGBT在很短的导通期间,吸收电容未分放电而马上关断,且因分布电感和漏感的影响,IGBT的关断是在承受较高的反压下进行的,极易使IGBT损坏,为了使IGBT 关断过电压能得到有效的抑制并减少关断损耗,需要给IGBT主电路设置关断缓冲吸收电路。IGBT的关断缓冲吸收电路分为充放电型和放电阻止型,从吸收过电压的能力上来说,充放电型效果较好,所以可在弧焊逆变电源中的IGBT过压保护缓冲电路可采用图4所示缓冲吸收电路: ![]() 在此硬件电路的基础上,结合单片机的控制系统可检测输出电压低于某一设定值时,单片机便认为负载电弧是处于短路状态,这时单片机便对IGBT的最小脉冲宽度进行限制,以保证吸收电容有足够的放电时间,从而降低IGBT的关断反向电压。同时为保证输出电流恒定,单片机在判断输出为短路时将逆变器的等脉冲宽度调节(PWM)变为频率调节控制(PFM),即脉冲分频控制,输出电压越低,输出脉冲的频率越低。其单片机程序过程如图5所示: ![]() 这与传统的简单限流或直接关闭IGBT的控制方式有本质的区别,它是利用单片机的智能性改变其工作方式来保护IGBT的安全,从而可靠的保证IGBT的安全。 3.3 过流保护 过流对IGBT来说,是产生原因最复杂、发生次数最多、损坏概率最高的事件,也是国内弧焊逆变电源容易损坏的主要原因。IGBT正常工作时,导通期间的电流包括开通时的尖峰、折算到原边的焊接电流和关断时的拖尾电流。在设计IGBT的过流保护时,主要可采取以下三条措施:首先选择IGBT器件时,使其最大工作电流只占IGBT ![]() ![]() 正常工作时,因故障检测二极管 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() 3.4 过热保护 在焊接工作时由于工作环境恶劣,流过IGBT电流很大,并且开关频率较高,所以器件的损耗也较大,如果热量不能及时散掉,使结温 ![]() ![]() 4 结语 本文介绍了利用硬件保护电路并结合单片机的程序对弧焊逆变电源中IGBT进行保护的方法和措施。该方法不仅从硬件电路上设计了可靠的保护电路,而且还利用单片机的程序来对设备工作状态进行判断后选择工作方式来间接对IGBT进行保护,这样不仅保护了IGBT的安全还保证了该电源即使在恶劣的环境的中也能可靠稳定的工作。所以在实际应用中只要我们考虑到IGBT的不同容量、型号并参考以上方法采取相应的保护措施就可以达到满意的效果。 参考书目: [1] 张占松 蔡宣三 开关电源的原理与设计 第一版 电子工业出版社 1998年7月 [2 ] 蒋怀刚 李乔 何志伟 IGBT 模块驱动及保护技术 电源技术应用 中国电源学会 2003.4 您打印的此文来自: |
|
作者:李强 王… 来源:《电源世界》 点击数: |
- | 【字体:小 大】 | ![]() |
![]() |