![]() |
【字体:小 大】 | ![]() |
![]() |
一种基于电容的电磁全隔离直流电源传输电路 | |
http://www.dykf.com 2010/8/8 电源开发网 | |
高性能的电子电路要求高度洁净的电源。然而目前在供电线路上的各种电器设备会产生许多高次谐波,对供电质量造成影响。开关型稳压电源以及DC-DC变换器都在输入回路中采用开关管作为斩断电流的器件。高频变压器把脉动的电流信号由初级回路传输到次级回路,再通过采样反馈到初级,实现稳压调节。在典型的电源电路中[1][2][3],尽管输入端与输出端不共地,但高频变压器作为电磁耦合通道,其传递函数有一定的频率选择性。输入端电源窄脉冲干扰含有十分丰富的频率分量,会耦合到输出端,使电源的供电质量下降,存在使微机程序跑飞的可能性。 本文提出了一种基于电容的全隔离直流电源传输电路,它依靠几组电容存储电荷来实现传输电能。由于电路输入、输出端不存在电磁耦合通路,电路实现了完全的电磁隔离。 图1 直流传输电路系统框图 图1中A是MOS管的阵列,B是电容的阵列,C是光电耦合器的阵列,D是稳压电路,E是电压比较器,F是单片机。 为了利用电容给负载供电并且同时保证负载两端电压的稳定,采用多个电容是理想的解决方法。可以将多个电容分为两组,在同一时刻,保证有一组电容给负载供电而另外一组接受外部电源的充电。在单片机控制下的MOS管实现输入输出间的电磁隔离。 图2表示电容、MOS管、光电耦合器的连接图,即图1中的A、B、C的连接。 图2 电容、MOS管、光电耦合器的连接图 其中#1、#2、#3、#4接单片机的四个输出端口。 如图1和图2所示,电路输入端与输出端采用不同的“地”,避免电磁干扰通过共接的“地”传递到输出端。 图3表示出两组电容的工作时序。 图3体现了本电路在时序上的两个特点。第一,在同一组电容中,充电与供电状态之间存在一个悬空状态,即电容与输入、输出端都断开,从而使输入、输出端之间不可能存在电磁耦合通路。第二,两组电容轮流供电时,有一段共同供电的时间,保证在任意时刻都有电容给负载供电,从而避免了两组电容同时切换带来的输出电压的突变,提高了输出电压的稳定性。 图4 两组电容的电压随时间变化图 3 单片机编程流程 图5中,“1H,2L,3H,4L”表示控制端口1为高电平,2为低电平,3为高电平,4为低电平。其它依此类推。 4 结论 本文介绍了一种基于电容的电磁干扰全隔离直流传输电路。电容拥有的电荷存储特性以及MOS管和光电耦合器的运用,使得该电路可以将输出端与来自输入端的电磁干扰完全隔离,从而有效地抑制了来自电源的传导干扰,可以广泛地使用在电磁环境恶劣的电源电路中。 您打印的此文来自: |
|
作者:郑乐 来源:电源世界 点击数: |
- | 【字体:小 大】 | ![]() |
![]() |