【字体:小 大】 |
电力系统中光电电流互感器研究 | |
http://www.dykf.com 2014/1/30 电源开发网 | |
0 引言 电流互感器是电力系统中进行电能计量和继电保护的重要设备,其精度及可靠性与电力系统的安全、可靠和经济运行密切相关。然而随着电力工业的发展,电力传输系统容量不断增加,运行电压等级也越来越高,目前我国电网的最高电压等级已达500 kV,下一个电压等级也许是750 kV或1 000 kV。此时,传统的电磁式电流互感器暴露出一系列严重的缺点:电流互感器的绝缘结构将非常复杂,造价也会急剧增加;由于电磁感应式电流互感器所固有的磁饱和、铁磁谐振、动态范围小、频带窄以及有油易燃易爆等缺点,已难以满足新一代电力系统在线检测、高精度故障诊断、电力数字网等的发展需要。寻求更理想的新型电流互感器已势在必行,目前注意力已集中到光学传感技术,即用光电子学的方法来发展所谓的光电式电流互感器(optical current transformer,简称OCT)[1]。与传统的电磁式电流互感器相比,光电式电流互感器具有抗电磁干扰、不饱和、测量范围大、频带宽、数字信号传输、体积小 、重量轻等优点。光电式电流互感器从传感头有无电源供电的角度可分为有源OCT和无源OCT两大类。有源OCT又分为频率调制式、脉冲调制式、数字调制式及强度调制式;无源OCT可分为全光纤式、光电混合式、块状玻璃式。尽管OCT已研究了20多年,经过了大量的理论分析、实验研究及挂网运行,但到目前为止还没有一种大批量的商品化产品投放市场[2]。其根本原因在于:虽然原理、技术可行,但要在高电压、高电磁干扰、高温差变化等环境影响下长期、稳定、可靠地运行还需付出更多的努力。 1 有源OCT 有源OCT就是基于传统的电流互感器(TA),利用有源器件调制技术,以光纤作为信号通道,把高压侧转换的光信号传到地面进行信号处理,得到被测信号的装置。这种互感器的特点是,既利用了光纤系统提供的高绝缘性的优点,显著地降低了电流互感器的制造成本、体积和重量,又充分发挥了被电力工业界广泛接受的常规TA测量装置的优势,同时还避免了传感头光路的复杂性及全光纤传感头线性双折射、块状玻璃全反射相位差等技术难点。 图1 有源OCT原理图 在此系统中,被测高压电流信号经一个特制的TA变换为适当的电信号;再把电信号输入调制器,用调制器的输出去驱动光源,以便用数字方法调制作为载波的光波。在光源处实现电—光变换,把电信号变为携带信息的光信号。光源采用发光二极管LED。光信号通过光纤传到接收部分,在此,光纤作为传输媒介。在接收部分,先由光电探测器实现光—电转换,把带有信息的光信号变为电信号,光电探测器采用PIN光电二极管。然后把光电探测器输出的信号经放大后再进行解调,以得到和原始信息相近的信号。图中高压侧的供电电源由地面500 mW的半导体激光二极管LD用光纤把能量推动到高压侧,经过高转换效率(40%左右)的光电池PPC把光能变为电能,通过DC/DC变换电路处理、整定后,可得到稳定的约80 mW供电电源功率,传感头的后级电路都采用CMOS器件,以降低电路的功耗。经过实验测试,传感头部分的电路消耗功率约为50 mW。 2 无源OCT 无源OCT就是传感头部位没有电源供电的光电电流测量装置。无源OCT多采用法拉第磁光效应和干涉原理,以前者为主。无源OCT的特点是:整个系统的线性度比较好,灵敏度可以做得较高;绝缘性能好。它的难点是精度和稳定性易受温度、振动的影响。利用法拉第磁光效应实现的无源OCT有全光纤式、光电混合式和块状玻璃式。全光纤式的OCT,光纤本身就是传感元件,结构比较简单,但光纤线性双折射的问题一直是困扰着它的主要难点;光电混合式的精度受到一定的限制。目前使用最为普遍的是块状玻璃式无源OCT,国外挂网实验运行也都是此类型,它是最有实用化可能的类型之一,故而我们也采用此方案。 (1) 式中 θ为线偏振光偏振面的旋转角度;V为磁光材料的Verdet常数;l为磁光材料中的通光路径;H为电流I在光路上产生的磁场强度。 θ=VKI (2) 式中 K为只跟磁光材料中的通光路径和通流导体的相对位置有关的常数,当通光路径为围绕通流导体1周时,K=1,故只要测定θ的大小就可测出通流导体中的电流。 图2 磁光无源OCT传感头结构图 原理图如图3所示,实验结果如图4、图5所示。图中曲线是在额定电流为1200 A时与标准0.1级TA比较所得的比差和角差结果。电流在80 A~2 300 A、额定电流为1200 A时,比差值在0.2级精度,电流小于80 A时比差变差。这主要是噪声及互感器灵敏度所限。同时把传感头放在-20 ℃~70 ℃的温度范围内,它的比差变化均小于0.3%。无源磁光式OCT的优点是精度高、线性度好、测量范围大、体积小、重量轻,在220 kV电压下整个传感器的重量约为20 kg。 图3 磁光式无源OCT原理图 图4 磁光式无源OCT的比差 图5 磁光式无源OCT相位差 3 讨论 经过20多年的努力,人们对全光纤OCT的优点及存在的问题已有了正确的认识,进行了较深入的研究,并尝试了许多方法,解决光纤内双折射给互感器带来的不良影响。尽管3M公司声称已研制成功了无偏光纤,但到目前为止还没有见到真正商品化的全光纤OCT。所以在这个问题没有彻底解决以前,全光纤OCT还很难应用于实际工程。然而,全光纤OCT是光纤电流测量技术的最终发展趋势。 4 结论 本文对电力系统中的光电电流测量技术进行了分析,讨论了作者所从事的数字调制式有源OCT和闭环块状玻璃式无源OCT的工作原理、实验情况及其主要特点。尽管在研究开发方面,取得了一些成果,但要真正实现实用化商品生产,还需要从原理、工艺、材料方法上做进一步的努力,光电电流互感器的时代一定会到来。 您打印的此文来自: |
|
作者:王廷云 罗… 来源:电力系统自动化 点击数: |
- | 【字体:小 大】 |