【字体:小 大】 |
影响IGBT驱动电路性能参数的因素分析 | |
http://www.dykf.com 2014/3/23 电源开发网 | |
IGBT 即绝缘门极双极型晶体管( IsolatedGate Bipolar Transistor), 这是八十年代末九十年代初迅速发展起来的一种新型复合器件。由于它将MOSFET和GTR的优点集于一身, 具有输入阻抗高、速度快、热稳定性好、电压驱动(MOSFET的优点), 同时通态压降较低, 可以向高电压、大电流方向发展(GTR的优点)。因此, IGBT发展很快, 特别是在开关频率大于1kHz, 功率大于5kW的应用场合具有很大优势。在全桥逆变电路中, IGBT是核心器件, 它可在高压下导通, 并在大电流下关断, 故在硬开关桥式电路中, 功率器件IGBT能否正确可靠地使用起着至关重要的作用。驱动电路就是将控制电路输出的PWM信号进行功率放大, 以满足驱动IGBT的要求, 所以, 驱动电路设计的是否合理直接关系到IGBT的安全、可靠使用。为了确保驱动电路设计的合理性, 使用时必须分析驱动电路中的参数。 1 栅极电阻和分布参数分析 IGBT在全桥电路工作时的模型如图1所示。 RG+Rg是IGBT的栅极电阻, L01、L02、L03是杂散电感(分布电感), Cgc、Cge、Cce是IGBT的极间电容, U1是驱动控制信号, U2为母线电压。
1.1 IGBT的导通初态 二极管D1导通时, 若Uge为所加的反向电压值(可记为-Ug2, 正向电压记为+Ug1), 集电极电流iC=0, Uce=U2。开通后, U1向Cgc、Cge充电, 此时Uge可写成:
若Q1处于全导通状态, 二极管D1处于截止状态, 二极管中的电流为0, Uce为IGBT管压降,Uge=Ug1, 输入电压由Ug1变为-Ug2, Cge和Cgc被反向充电, uge下降, 此时uge可表示为:
上式表明, τi越大, 关断延迟时间越长。 1.3 导通至关断的过程 IGBT在开关过程中, 可能会有电压或电流的突变, 这将引起器件上电压或电流尖峰的产生以及高频谐波振铃。这一现象有两个不利点: 一是会产生电磁干扰, 二是会增加器件的应力。通常采取的应对措施是用缓冲吸收回路来抑制开关过程的突变。下面会分析一下电路中产生电压或电流尖峰的原因。 首先是导通至关断过程中的杂散电感极性会发生变化, IGBT极间电容在IGBT关断时, 也会反向放电。 其次, 二极管D1导通时, 相应的D1中的电流iD1会上升。为了维持原先的电流, 储存在L02中的磁能将释放出来, L02的端电压反向, 该电压将使IGBT产生关断过电压, 即在CE两端产生电压尖峰。如果杂散电感L02足够小, CE端电压的尖峰只等于IGBT的管压降(2V左右)。但由于CE端产生了电压尖峰, 故使集电极电流iC有了一个负向的尖峰。 另外, 开通过程中, 由于二极管D1的反向恢复电流IRM将叠加在集电极电流iC上, 这也会使IGBT实际流过的电流存在一个尖峰, 这一尖峰可通过串联在回路中的电阻上的电压波形观察。 2 实验设计及结果分析 图2所示为本实验的电路连接图, 其中R1取5Ω~20Ω; C1 取10000pF ~40000pF; R2 取20Ω~50Ω; C2是电解电容, 取值为1000μF~3000μF;C3是薄膜电容, 取值1.5μF; U是直流电压源, 电压为10V~100V。实验时, 可通过改变R1、R2、C1、C2和U的大小来观察各部分波形的变化, 以分析各个参数对整个电路的影响。其实验时测试的波形如图3所示。通过观察和分析实验波形的变化, 可以得出以下结论:
图3 实验测试波形图 在输入端增大串联电阻R1的阻值, 会使输入驱动波形的上升沿与下降沿(GE端电压) 的锐度减缓, 其影响是使IGBT的开通与关断的时间延长, 同时输出端(CE) 的上升沿与下降沿的锐度也同样减缓, 并可减小输出端CE两端电压的尖峰, 另外, 带给电源的高频谐波的峰值也在减小。但是, 这样会使IGBT的开关损耗增大。 GE端并联电容C1同样会使输入驱动波形的上升沿和下降沿锐度减缓, 这对输出端CE间电压上升延迟和下降延迟有减缓作用, 但该作用没有增加R1阻值的效果明显。 当R2减小, 即负载增大时, 随之增大的还有CE间电压尖峰和CE间电压波形的上升时间和下降时间, 以及电源端电压中交流成分的幅值。 直流电源两端并联的电解电容C2可以有效抑制电源两端的低频谐波, 谐波的频率在20kHz左右(与驱动信号频率相同), 在直流电源两端并联薄膜电容C3对高频谐波(几兆赫芝) 的抑制很有效。但是, 当两个电容同时作用时, 高频谐波依然会被引入, 这并没有达到我们预期的效果;对比直流电源电压在10V~100V时各种情况下的电压上升沿与下降沿时间可以发现: 上升时间与下降时间不会随着直流电源电压的增大而变化。也就是说: 在实际的全桥电路中, 这些参数不会跟随母线的变化而变化。 3 结束语 在实际电路中, 栅极电阻的选择要考虑开关速度的要求和损耗的大小。栅极电阻也不是越小越好, 当栅极电阻很小时, IGBT的CE间电压尖峰过大, 栅极电阻很大时, 又会增大开关损耗。 所以, 选择时要在CE间尖峰电压能够承受的范围内适当减小栅极电阻。 由于电路中的杂散电感会引起开关状态下电压和电流的尖峰和振铃, 所以, 在实际的驱动电路中, 连线要尽量短, 并且驱动电路和吸收电路应布置在同一个PCB板上, 同时在靠近IGBT的GE间加双向稳压管, 以箝位引起的耦合到栅极的电压尖峰。 |
|
作者:张月梅 … 来源:电子元器件应用 点击数: |
- | 【字体:小 大】 |