Research of Oscillation Occurring on Zero Point of Monopole SPWM Controlled Full-bridge Inverter
Abstract:The monopole SPWM converter has merits of lower loss, lower EMI comparing with bipolar SPWM inverter. It's fit the needs of SPWM control than others methods. But the monopole SPWM still has its disadvantage, or zero oscillation. The symmetry SPWM control method of monopole inverter is introduced, the phenomenon of the oscillation occurring on the zero point of sine wave ouput of the inverters is analysed, and then a method to remove the oscillation is presented, the method is demonstrated with experiment.
Key words:full-bridge inverter; monopole
0 引言 当前众多电源应用领域对交流电源的要求越来越高,传统的电网直接供电方式在很多场合已无法满足要求,因此,需要对电网或者其他能源处理后逆变输出。高质量的逆变电源已经成为电源技术的重要研究对象。全桥架构又是逆变器中非常重要的架构。全桥逆变控制方式主要分为双极性控制方式和单极性控制方式。双极性控制是对角的一对开关为同步开关,桥臂上下管之间除死区时间外为互补开关,控制相对简单,但是它的开关损耗高,存在很大的开关谐波,电磁干扰大,而单极性控制可以很好地解决这些问题。全桥逆变器单极性控制仅用一对高频开关,相对于双极性控制具有损耗低、电磁干扰小、无开关频率级谐波等优点,正在取代双极性逆变控制方式。但由于控制环路的延时作用,单极性控制方式的逆变器仍然受一个问题的困扰,即在过零点存在一个明显的振荡。单极性控制方式又包括单边方式和双边方式,双边方式相对于单边方式在抑止过零点振荡方面有一定优势[1],但仍然无法做到过零点的平滑过渡。为了提高逆变器的输出波形质量,本文分析了,单极性双边控制方式,分析了其振荡产生原因,并介绍一种解决过零点振荡的方案。
l 主电路拓扑 单极性SPWM逆变器如图1所示,由2组桥臂构成,一组桥臂(S3,S4)以高频开关工作频率工作,称为高频臂;另一组桥臂(S1,S2)以输出的正弦波频率进行切换,称为低频臂。
2 单极性双边SPWM控制方式 单极性逆变有两种产生SPWM的方法,分为单极性单边SPWM控制方式和单极性双边SPWM控制方式,文献l对此有比较详尽的介绍,这里只介绍过零点特性较好的双边控制方式,这种方式对于单边控制方式仍然有效。在单极性双边SPSM控制方式中,给定的载波信号按正弦方式变化,三角调制波信号,当输出电压为正时三角波为正,输出电压为负时三角波为负,如图2所示。高频臂上管S3的开关由载波与调制波相比较决定,载波幅值大于调制波则开通,载波幅值小于调制波则关断,除去死区时间,高频臂上管S3与高频臂下管S4的开关完全互补。这样即可得到SPWM规律的高频臂开关信号,实现逆变器的正弦波输出。
3 过零点振荡分析 图3为双边SPWM控制方法在过零点附近的SPWM示意图。图中E1理论上为跟基准(电压波形)同相位的误差信号,由于在电压环和电流环两个环节中存在积分环节,实际的误差信号E2会与基准信号相差一个相位。图3中SPWM1是理论上的高频臂上管(S3)的驱动信号,SPWM2则是实际的高频臂上管(S3)的驱动信号。
1)to~t1区间 由图3可以看到,在to~t1.区间,由于给定的低频臂信号为高电平l,对应主电路低频臂下管(S2)导通,图3中SPWM对应的高频臂上管(S3)的驱动信号,当误差信号(E1或E2)大于三角波,比较器输出高电平,小于则输出低电平,以此获得SPWM1或SPWM2。由图3可以知道在to~t1区间,输出正弦波由正逐渐变为O。由于E2滞后于理想的误差信号E1,,在t1时刻正 半波向负半波转变时E2会大于E1,造成的影响就是过零点附近实际的占空比SPWM2要大于SPWM1。理论上此时的正弦波输出逐步减小到零,到零后再进行低频臂的切换,而事实上并不是降到零就会进行低频臂的切换。
2)t1~t2区间 实际的输出误差信号E2滞后于E1一个相位,在该相位内,误差信号E2为正,始终大于调制波信号,因此高频臂上管(S3)始终开通,下管(S4)始终关断。在该时段内,SPWM偏离了正弦波调制的规律,因此输出也就无法维持正弦波规律。这个时段与控制环的参数有关,一般在数百μs左右,表现为正弦波在过零点有一个振荡。
4 过零点振荡的观察结果 以一个单极性双边SPWM控制的110v/25Hz逆变器为例。电流环的输出如图4所示,在过零点处有一个很明显的振荡。将该振荡展开,如图5所示,CHl为电流环输出,CH2为低频臂信号。可见在低频臂切换后,电流环的输出会有一个过冲,这个过冲会达到运放的饱和值,持续时间100~200μs。这个控制信号过冲在逆变输出中的表现为过零点有一个过冲,从正向到负向的切换表现为向下的过冲,负向到正向的切换表现为一个向上的过冲,大为影响了输出波形的平滑性。逆变输出过零点的观察结果如图6。过冲的峰值达到了22V,相对于110V的峰值电压156V,扰动相对值为14%。由实验观察可以比较出,电压环在低频臂切换点的响应很微弱,不足以造成大的振荡。由于电流环则因为其快速反应的特性,出现了饱和现象,而电流环的输出直接送至PWM发生器,因此会直接反映在逆变器的输出上。
5 解决方案 由上面的分析可知,对于单极性SPWM全桥逆变器,由于它的电流环和电压环都存在积分环节,因此,误差信号相对于给定信号不可避免存在一个延迟,这个延迟在非零点附近不会对系统的输出造成影响。但是,在过零点附近,由于单极性SPWM需要换向,积分环节的延迟就会造成一个振荡。这是由控制系统本身缺陷所致,若要消除该振荡,就需要改进控制系统,以消除积分环节延迟的影响。
图7所示为电流环积分电容上的电压,在低频臂切换后出现了一个过冲。这是因为在切换点电流环的快速切换,需要运放在大约100~200μs里传递一个较大的能量,而积分电容吸收了这部分能量,造成运放的输出端不能快速地跟踪这个转换。因此,如果在切换点使电流环在约1001μs的时段内由积分环节变为比例环节,将会有效地避免这个充放电过程,从而避免丁运放输出点的过冲,也避免了逆变器过零点的振荡。
图8提出了一种解决过零点振荡的调整电路方案。在该过零点调整电路中引入了G1、G2信号(低频臂的上下桥臂的驱动信号),它们在低频臂上下桥臂切换时发出一个约100μs的脉冲,这个脉冲开通光耦,将电流环上的积分电容短路,实现了切换阶段的比例环节。
6 实验结果 如图9所示,在加入过零点调整电路后,电流环的输出中消除了过零点的过冲。如图10所示,逆变器的输出在过零点消除了振荡现象,相对于未加过零点凋整电路,逆变器过零点非常平滑。
7 结语 单极性双边SPWM控制方式的全桥逆变器,因为控制环路的积分延时效应造成过零点的明显振荡,可以通过修改过零点阶段的电流控制环特性来消除积分效应,使得逆变器输出过零点波形平滑,提高了逆变器的输出质量。实验结果表明该方案切实可行。
您打印的此文来自:
|