1引言
经典DC/DC变换器的体积通常都很大,并且功率密度和功率传输效率均很低。虽然第一代罗氏变换器显著地增大了电压传输增益,提高了功率密度和功率传输效率,但是相对而言,其开关上的功率损耗仍然很大[1-8]。高功率密度的开关电感变换器已成功地应用于DC/DC变换器[7-9]中,但是在开关闭合和关断的转换期间,很大的电流和电压所产生的交叠,会在变换器内部两只开关上产生很大的功率损耗。
运用软开关技术可以减少功率损耗[10-14]。然而大多数文章中论述到的这类变换器仅是单象限运行。本文介绍的新型四象限DC/DC零电流开关准谐振罗氏变换器,能够有效地降低变换器的开关损耗,从而极大地提高功率传输效率。四象限DC/DC零电流开关准谐振罗氏变换器的电路如图1所示。电路1实现了Ⅰ,Ⅱ象限内的运行;电路2实现了Ⅲ,Ⅳ象限内的运行;电路1和电路2可以通过辅助开关实现相互转换。每一个电路都是由一只主电感L和两只开关及辅助元件所组成。假设主电感L足够大,则通过它的电流iL可认为是一常数。源电压V1和负载电压V2通常是恒定的,如:令V1=42V,V2=±28V[7-9]。
它的4种运行模式如下:
图1四象限DC/DC零电流开关准谐振罗氏变换器
(a)电路1(Ⅰ,Ⅱ象限内运行)(b)电路2(Ⅲ,Ⅳ象限内运行)
电路//开关或二极管 |
模式A(象限-Ⅰ) |
模式B(象限-Ⅰ)Ⅱ |
模式C(象限-Ⅲ) |
模式D(象限-Ⅳ) |
状态—通 |
状态—断 |
状态—通 |
状态—断 |
状态—通 |
状态—断 |
状态—通 |
状态—断 |
电路 |
电路1 |
电路2 |
S1 |
通 |
|
|
|
通 |
|
|
|
D1 |
|
|
|
通 |
|
|
|
通 |
S2 |
|
|
通 |
|
|
|
通 |
|
D2 |
|
通 |
|
|
|
通 |
|
|
表2不同频率时的实测结果
模式 |
f/(kHz) |
Lr1=Lr2/(μH) |
Cr/(μF) |
I1/(A) |
I0/(A) |
IL/(A) |
PI/(W) |
P0/(W) |
η/(%) |
PD/[W/(in)3] |
A |
20.5 |
1 |
4 |
16.98 |
25.00 |
25 |
713.0 |
700.0 |
98.2 |
17.66 |
A |
21.0 |
1 |
4 |
17.40 |
25.00 |
25 |
730.6 |
700.0 |
95.8 |
17.88 |
A |
21.5 |
1 |
4 |
17.81 |
25.00 |
25 |
748.0 |
700.0 |
93.5 |
18.10 |
B |
16.5 |
1 |
4 |
25.00 |
16.40 |
25 |
700.0 |
688.8 |
98.4 |
17.36 |
B |
17.0 |
1 |
4 |
25.00 |
16.20 |
25 |
700.0 |
680.4 |
97.2 |
17.25 |
B |
17.5 |
1 |
4 |
25.00 |
15.97 |
25 |
700.0 |
670.1 |
95.8 |
17.13 |
C |
19.0 |
1 |
4 |
16.17 |
23.82 |
35 |
679.1 |
667.0 |
98.2 |
16.83 |
C |
19.3 |
1 |
4 |
16.42 |
23.64 |
35 |
689.7 |
662.0 |
96.0 |
16.90 |
C |
19.5 |
1 |
4 |
16.59 |
23.53 |
35 |
696.8 |
658.8 |
94.5 |
16.95 |
D |
40.0 |
1 |
4 |
24.05 |
15.64 |
35 |
663.4 |
656.8 |
97.5 |
16.50 |
D |
40.3 |
1 |
4 |
24.23 |
15.49 |
35 |
678.5 |
650.6 |
95.9 |
16.60 |
D |
10.5 |
1 |
4 |
24.35 |
15.40 |
35 |
681.8 |
646.7 |
94.8 |
16.61 |
表1开关状态(空白表示关断)
图2模式A运行
(a)等效电路(b)波形图
(1)模式A(象限I):电能由V1端传向V2端;
(2)模式B(象限II):电能由V2端传向V1端;
(3)模式C(象限Ⅲ):电能由V1端传向-V2端;
(4)模式D(象限Ⅳ):电能由-V2端传向V1端。
每种模式都有两个状态:“通”状态和“断”状态,其开关状态如表1所示[6,7,9]:
2模式A
模式A是一零电流开关(ZCS)buck变换器,其等效电路、电流和电压的波形图如图2所示。开关导通和关断周期可分为4个时间段0~t1,t1t2,t2~t3和t3~t4。导通时间为kT=t2,此时输入电流流经开关S1和主电感L。整个周期为T=t4。谐振电路为Lr1-Cr。谐振角频率为:(1)特征阻抗为:(2)
谐振电流(交流分量)为:(3)
考虑到直流分量,电流峰值为:(4)
2.1时间间隔0~t1当t=0时开关S1导通,源电流以斜率V1/Lr1线性增加,但始终比负载恒定电流IL小,因此谐振电容Cr上无电流流过。当t=t1时,源电流等于负载恒定电流IL,此时t1为:(5)相应的位移角为:(6)
2.2时间间隔t1~t2
在这一时间段,电流流过谐振电容Cr,电路Lr1-Cr谐振,电流波形为一正弦函数曲线。当过峰值后,电流下降至IL,如果变换器工作在准谐振状态,则在t=t2时电流下降到零,开关S1关断(模式B,C,D亦然)。
显然开关S1是在电流为零时关断。这一时间长度为:(7)
同时,电容Cr上的电压也是一正弦函数。当t=t2时,电容上的电压vc相应的电压值Vco为:
VCO=V1[1+sin(π/2+α1)]=V1(1+cosα1)(8)
2.3时间间隔t2~t3
由于开关S1关断,所以电容Cr上所充的电量将会通过负载电流IL释放。因为负载电流IL是一常数,所以电压vc在时间间隔t2~t3内由Vco线性减小至0,则这一时间长度为:(9)
2.4时间间隔t3~t4
由于续流二极管D2的存在,电容电压vc不能减小至负值。当t=t3时,负载电流不再流经Cr,而是流经D2。从这时起,续流负载电流流过主电感L、负载电源V2和续流二极管D2。这一阶段的时间长度(t4-t3)取决于设计要求。若忽略功率损耗,且认为I2=IL,得出输入电流平均值I1为:(10)因此,(11)
导通占空比为:k=t2/t4(12)
整个开关周期为:T=t4(13)
相应的频率为:f=1/T(14)
图3模式B运行
3模式B
模式B是一零电流开关(ZCS)boost变换器,其等效电路、电流和电压波形如图3所示。开关导通和关断周期可分为4个时间段0~t1,t1~t2,t2~t3和t3~t4,导通时间为kT=t2,输出电流仅在时间段t4-t3内流经电源V1。整个周期为T=t4。谐振电路为Lr2-Cr。
谐振角频率为:(15)特征阻抗为:(16)谐振电流(交流分量)为:(17)考虑到直流分量,电流峰值为:(18)
3.1时间间隔0~t1
t=0时开关S2导通,电容Cr上的电压等于电源电压V1。电感电流iLr2以斜率V1/Lr1线性增加,但始终比负载恒定电流IL小。因此谐振电容Cr上无电流流过。当t=t1时,电感电流等于负载恒定电流IL,则t1为:(19)相应的位移角为:(20)
3.2时间间隔t1~t2
在此时间段内,电流流过谐振电容Cr,电路Lr2-Cr谐振,电流波形为一正弦函数曲线。当过峰值点后,电流下降至IL。如果变换器工作在准谐振状态,则在t=t2时电流下降到0,开关S2关断。这一时间长度为:(21)
同时,电容上Cr的电压也是一正弦函数。当t=t2时,电容上的电压vc相应的电压值Vco为:
Vco=-V1sin(π/2+α2)=-V1cosα2(22)
3.3时间间隔t2~t3
由于开关S2关断,电容Cr上所充的电量将会通过负载电流IL释放。因为负载电流IL是一常数,所以电压vc在时间间隔t2~t3内,由Vco线性增大至源电压V1,则这一时间长度为:(23)
3.4时间间隔t3~t4
由于续流二极管D1的存在,电容电压vc不能比源电压V1高。当t=t3时,负载电流不再流经Cr,而是流经D1。从这时起,负载电流流过主电感L,续流二极管D1,源电压V1和负载电压V2。这一阶段的时间长度(t4-t3)取决于设计要求。若忽略功率损耗,且I2=IL,我们得出输出电流平均值I1为:(24)或(25)因此(26)
导通占空比为:k=t2/t4(27)
整个重复周期为:T=t4(28)
则相应频率为:f=1/T(29)
4模式C
模式C是一零电流开关(ZCS)buck-boost变换器,其等效电路、电流和电压的波形图如图4所示。开关导通和关断周期可分为4个时间段0~t1,t1~t2,t2~t3和t3~t4。导通时间为kT=t2,此时输入电流流经开关S1和主电感L。输出电流仅在t4~t3时间段内流经负载电压V2。整个周期为T=t4。谐振电路为Lr1-Cr。谐振角频率为:(30)特征阻抗为:(31)
图4模式C运行
(a)等效电路(b)波形
谐振电流(交流分量)为:(32)
考虑到直流分量,电流峰值为:(33)
4.1时间间隔0t1
当t=0时开关S1导通,电容Cr上的电压等于负载电压V2。源电流以斜率(V1+V2)/Lr1线性增加,但始终比负载恒定电流IL小,因此谐振电容Cr上无电流流过。当t=t1时,源电流等于负载恒定电流IL,此时t1为:(34)
相应的位移角为:(35)
在t=0时开关S1导通之前,续流二极管D2导通。因此谐振电容Cr上的电压vC在这一阶段等于V2。
4.2时间间隔t1~t2
在这一时间段,电流流过谐振电容Cr,电路Lr1-Cr谐振,电流波形为一正弦函数曲线。当过峰值后,电流下降至IL,如果变换器工作在准谐振状态,则在t=t2时电流下降到零,开关S1关断。这一时间长度为:(36)
同时,电容Cr上的电压也是一正弦函数。谐振振幅等于V1。当t=t2时,电容上的电压vc相应的电压值Vco为:
Vco=V1-V2+V1sin(π/2+α1)
=V1(1+cosα1)-V2(37)
4.3时间间隔t2~t3
由于开关S1关断,电容Cr上所充的电量将会通过负载电流IL释放。因为负载电流IL是一常数,所以电压vc在时间间隔t2t3内由Vco线性减小,在t=t3时减小至-|V2|,则这段时间长度为:(38)
在这一时间段,续流二极管D2由于反向偏置,故不导通。
4.4时间间隔t3~t4
当t=t3时,电容电压vc等于负载电压V2,这时续流二极管D2导通。当t=t3时,主电感上的电流不再流经电容Cr,而是流经V2。从这时起,负载电流续流流过主电感L,负载电压V2和续流二极管D2。这一阶段的时间长度(t4-t3)取决于设计要求。若忽略功率损耗,且认为I2=IL,我们得出输入、输出电流平均值为:(39)(40)
因此,(41)
导通占空比为:k=t2/t4(42)
整个开关周期为:T=t4(43)
相应的频率为:f=1/T(44)
5模式D
模式D是一零电流开关(ZCS)buck-boost变换器,其等效电路、电流和电压波形如图5所示。开关导通和关断周期可分为4个时间段0~t1,t1~t2,t2~t3和t3~t4,导通时间为kT=t2,输出电流仅在时间段(t4-t3)内流经电源V1。整个周期为T=t4。谐振电路为Lr2-Cr。谐振角频率为:(45)特征阻抗为:(46)
谐振电流(交流分量)为:
图5模式D运行
(a)等效电路(b)波形
(47)
考虑到直流分量,电流峰值为:(48)
5.1时间间隔0~t1
当t=0时开关S2导通,电容Cr上的电压等于电源电压V1。电感电流iLr2以斜率(V1+V2)/Lr2线性增加,但始终比负载恒定电流IL小。因此谐振电容Cr上无电流流过。当t=t1时,电感电流iLr2等于负载恒定电流IL,则t1为:(49)相应的位移角为:(50)
5.2时间间隔t1~t2
在此时间段内,电流流过谐振电容Cr,电路Lr2-Cr谐振,电流波形为一正弦函数曲线。当过峰值点后,电流下降至IL,如果变换器工作在准谐振状态,则在t=t2时电流下降到零,开关S2关断。这一时间长度为:(51)
同时,电容Cr上的电压也是一正弦函数。当t=t2时,电容上的电压vc相应的电压值Vco为:
Vco=(V1-V2)-V2sin(π/2+α2)
=V1-V2(1+cosα2)(52)
5.3时间间隔t2t3
由于开关S2关断,电容Cr上所充的电量将会通过负载电流IL释放。因为负载电流IL是一常数,所以电压vc在时间间隔t2~t3内由Vco线性增大至V1,则这段时间长度为:(53)
5.4时间间隔t3t4
由于续流二极管D1的存在,电容电压vc不能比源电压V1高。当t=t3时,主电感上的电流不再流经Cr,而是流经D1。从这时起,输出电流I1流过主电感L,续流二极管D1,源电压V1和负载电压V2。这一阶段的时间长度(t4-t3)取决于设计要求。若忽略功率损耗,我们得出输出电流平均值I1为:(54)或(55)
因此,(56)
导通占空比为:k=t2/t4(57)
整个重复周期为:T=t4(58)
则相应频率为:f=1/T(59)
6实测结果
以1个±28V的直流电池做为负载、1个42V的直流电池做为电源来进行测试。测试条件为:V1=42V,V2=±28V,L=30μH,Lr1=Lr2=1μH,Cr=4μF且体积为40(in)3。实测结果如表2所示。可见,其平均功率传输效率为96.3%,且总的平均功率密度(PD)为17.1W/(in)3。经典变换器的功率密度通常小于5W/(in)3,因而本文所介绍的这种变换器的功率密度要高得多。由于开关频率较低(f<41kHz)且工作在简谐状态,所以高次谐波分量很小。通过快速傅立叶变换(FFT)分析,得出其总体谐波失真(THD)非常小,所以电磁干扰(EMI)很弱,可以满足电磁灵敏度(EMS)和电磁兼容性(EMC)的要求。
7结语
1种新型的四象限DC/DC零电流开关准谐振变换器已开发出来。由于它应用了软开关技术,因而极大地减少了开关功率损耗,实现了高效率的功率传输。因为其开关频率较低磁干扰(EMI)很弱,可以满足电磁灵敏度(EMS)和电磁兼容性(EMC)的要求。实验结果证实了这种变换器的上述优点和文中的分析。