| 网站首页 | 电源技术 | 电源资料 | 电源论坛 | 电源电路 | 电源人才 | 电源供求 | 留言本站 | 繁體中文 | 
[ ] 文章搜索:
您现在的位置: 电源开发网 >> 电源技术 >> 新手入门 >> 设计研究 >> 正文
基于预失真技术的短波功率放大器线性化系统
http://www.dykf.com  2008-5-25  电源开发网           ★★★

 

引言
    随着通信技术的发展,线性调制技术和宽带通信技术正得到越来越广泛的应用。在多通道短波通信发射设备中,多个包络变化很大的单边带调制信号经过叠加后,形成的宽带信号通过非线性射频功率放大器后会产生交调分量,因此,必须采用线性化技术以减少由此,产生的邻道干扰。预失真技术是一种广泛应用的线性化技术,其优点是方法灵活,相对复杂度较低。

系统结构
    对于短波通信而言,由于大多采用的是多载波单边带调制技术,信号对幅度敏感,而对相位不敏感,因此本文的假设前提是信号本身对相位不敏感,在此基础上提出以下方法。

    本文的预失真器是以查找表为基础的,其结构如图1所示。首先,根据功放特性测量的结果,按照某种算法建立预失真系数表。工作时,由输入信号的幅度产生查找表的地址(因为功放特性一般为信号幅度值的函数),并由此产生预失真系数,输入信号与该系数相乘,得到预失真信号。


图1  预失真器的结构                            

预失真技术的关键
查找表的建立

    设理想功放的放大率为K,对应于信号xn的功放的放大系数为gn,预失真器的系数为fn。yn=Kxn为理想放大器对应于xn的响应。通过测量的功放特性曲线表,可以查到当输出幅度ym=yn时对应的输入xm,从而得到以下关系:xmgm=Kxn=yn

    若xn预失真后的信号满足xnfn=xm,则xnfngm=Kxn

    从而,系统满足理想功放的特征。

    因此,预失真系数可由下式计算得到:fn=xm/xn。

    预失真系数表的创建过程为:根据输入信号xn,计算其理想的响应yn,然后,通过功放特性表查找对应于响应yn的输入信号xm,最后计算预失真系数fn=xm/xn。

功放特性的测量

    对功率放大器非线性特性进行测定时,其输出信号为一个具有非线性失真的正弦信号,其中心频率设为f0。当然,它不是一个单一频率的信号。对功放输出信号不能进行窄带滤波,否则就测不到其非线性失真特性。其次,也不能采用模拟幅度检波的办法来测定其幅度,因为模拟检波器的效果不够理想。

    对功放输出的信号只能通过A/D转换,来测定功放失真特性参数,即其输出信号最大值。

    对功放失真特性的测量,具有两个特点:一是其中心频率可以选定,大概在10MHz~15MHz之间;二是只需测得其最大值。最大值不能通过积累或滤波的方法得到,因为功放输出的是失真的正弦信号,对它进行信号处理会引起失真。

    设采样率足够高,通过计算机模拟,得到ADC精度b=14和b=16时的两组曲线(见图2),其它参数相同。


图2  预失真系统仿真结果

    可见,测量精度对预失真处理效果十分明显,b=16时噪声电平较b=14时小6dB。
受器件限制,当ADC精度较高时,其采样率不易做高。

    为叙述方便,设功放输出为y(t)=cos(2筬0t)。

    测定y(t)的最大值时,由于采样率的原因,最大可能的误差为error=

    为充分利用ADC的精度,要求error<1/2b-1,即1-cos(?f0 / fs)<1/2b-1
当b=16,f0=11MHz时,其相位偏差小于0.0087弧度(即0.5°),则fs>4400MHz
这说明,如果对一个正弦信号的一个周期进行采样,那么采样率要高于4400MHz,才能保证采集到最大值。这显然不现实。实际上可以较低的采样速率对信号的多个周期进行连续采样,以达到同样的效果。

    设y(n)=cos(2筬0n/fs),若fs为f0的整数倍M,则y(n)=cos(2筺/M),
每个周期采集到的信号样点都是相同的,能否采集到信号的最大值取决于开始采样的时刻。因此,这种情况是达不到目的的。

    若fs不为f0的整数倍,设fs/f0=M+p/q,其中M为整数,p、q为互素的整数,且p < q,则有y(n)=cos(2筺/(M+p/q))=cos(2筿n/(qM+p))

    在这种情况下,0 < n < N,其中N=qM+p,在连续q个周期内采样,得到N个不同相位的样点,这等价于以更高的采样速率在一个周期内采样N个点。

    若相邻采样点间的相位差小于0.5°,则360/N < 0.5,即N < 720。
在设计中,通常先确定M和连续采样的周期数q,最后确定p。

    取采样率fs=160/3MHz,由于f0一般在10MHz~15MHz之间,所以可取M=3~5。这里取M=5,q=144, 在此情况下p可取1,5,7,11,…143,这里取p=43,得到的f0为10.0655MHz。

    仿真发现,采样点中数值≥cos(0.5?=0.9996的点有两个,即239和594,从而可知结论是正确的。

    理论上,采集到最大值所需时间为N/fs=(qM+p)/(160/3)ms=14.3062ms。实际中,需要采样的时间要远大于这个值,这里取t=20×(N/fs)=286.124≈287ms。
注意,在287ms期间内,可以得到一个正的最大值和一个负的最大值,应根据实际情况选其中之一或从两者取其一折衷。

    以较低的采样速率对信号进行多周期连续采样,可得到以较高速率对单个周期采样的效果。这种方法解决了ADC器件的选型问题。


图3  系统设计原理图

系统设计
    本文所设计的系统如图3所示。

    时钟分配:DSP时钟由专用的10MHz晶振提供;其他时钟由40MHz的晶振时钟通过CPLD和FPGA提供:40MHz一路进入CPLD,经过4分频后输出,作为AD73322的主时钟,另一路进入FPGA,经过内部PLL倍频和分频,产生80MHz、160MHz、160/3MHz的时钟,分别送入ISL5217、AD9777和AD9244。

各器件的主要参数配置

    AD73322:DMCLK=输入时钟=1,采样速率为DMCLK/256=39.0625KHz,SCLK=DMCLK/8。

    ISL5217:载频为10.0655MHz,载频相位=0,采样频率为39.0625KHz,插值倍数=16,数据输入方式为并口,数据输出方式为real、Shaping Filter 系数设置等。

    AD9777:内插倍数=2,调试方式为none,双端口输入模式,使能PLL。
FPGA的主要工作:控制模块,2倍插值滤波器,查找表,A/D采样最值的搜索。

系统任务
 
    前向通路:两个任务,一是发送测试数据到功放并输出;二是正常的数据通路。ADC以39.0625KHz的速率采样数据,然后将数据传送到DSP处理。DSP经过AGC、滤波和调制后,以39.0625KHz的速率传送到上变频器ISL5217,它将对输入数据进行2048倍插值,达到80MHz,然后将其调制到10.0655MHz的载频上,送往FPGA。FPGA将对其再进行2倍插值处理,然后进行预失真。最后,FPGA将预失真的数据送入DAC。DAC将对数据进行2倍插值处理,数据速率达到320MHz,然后经DAC输出到功放。

    反馈通路:负责功放特性的测量。RF_DA将以160/3MHz的速率进行采样,采样后的数据进入FPGA,FPGA将检测这些采样数据幅度最大值(正和负),并将其送到DSP进行记录。
  
系统工作流程
器件配置

    在系统调试完成后,首先在CCS环境下将FPGA加载文件烧写到Flash存储器中(只烧写一次),在以后的工作中,开机后,由DSP程序将FPGA的加载文件从Flash存储器读出来,通过FPGA串行配置方式加载到FPGA上,这样,其他芯片就有了时钟,然后DSP再配置其他器件。

功放特性的测量

    DSP以39.0625KHz发数据,从0到最大值32767,每个数据发送时间持续287ms,产生幅度恒定的正弦波,然后从FPGA中读取相应的包络幅度最值。注意,在搜索最值前,应先使发送信号稳定下来,以确保检测到的信号的准确性。

查找表的建立
 
   考虑到采样的误差,检测到的信号并不是平滑的曲线,如果直接利用监测到的信号来建表,系统误差是很大的。因此,要对采样的信号进行平滑处理,其方法是多样的,这里不作说明。由于采样信号的范围可能小于-32767~+32767,要做归一化处理,最后是启动正常的工作顺序。
  
结语
    预失真是实现功率放大器线性化的有效方法,其实现简单易行,系统稳定。本文提出的方法简单有效,非常适用于一次开机后,使用时间比较短的应用,因为时间长,系统温度会发生变化,功放的温漂会造成功放特性的显著变化,使系统性能极度恶化。
  
参考文献
1.赵洪新,陈忆元,洪伟.一种基带预失真RF功率放大器线性化技术的模型仿真和实验,通信学报,2005年5月,第五期,第21卷
2.Intersil com,AN1022, Operation and Performance of the ISL5239 Pre-distortion Linearizer,July 2002

来源:《电子设计应用》-2006年10期  作者:李相军  点击:  录入:admin
收藏此页】【字体: 】【打印此文】【关闭窗口
※相关链接※
没有相关文章
网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!) 发表评论
专 题 栏 目
推 荐 图 书
热 门 文 章
热 门 下 载
热 门 电 路
论 坛 推 荐
精 彩 广 告

关于本站 - 广告服务 - 联系我们 - 版权申明 - 网站地图 - RSS订阅 - 友情链接 - -
Copyright@2004-2014 ◆电源开发网◆ All Rights Reserved