1 引言
图1所示为220VAC供电的三洋80P机芯电源,它早年曾广泛使用在一些国内电视机中,其特点是:采用常规双极型功率管,全分立元器件,电路简单,成本低,但
却能满足电视机基本稳压要求,而且EMI噪音特少。其缺点是:动态反应较慢,AC/DC转换效率稍低(最高只有80%),稳压范围较窄(只有VI±10%),而对负载变化的调整特性也没有含光耦的第二代开关电源那么好。但作为全分立元器件的第一代开关电源,它的成本却比第二代低15~20元左右,因此从性能/价格比看,在某些场合它还是很有用的。
最近为了适应北美彩电市场开发大路货的要求,我们试将一个用于14″~21″CTV的三洋80P机芯电源改为用115V供电,同时又根据美国对STANDBY功耗<6W的要求适当修改了原电路,试验结果表明,新电路完全符合予定的设计要求。
2 电路原理和特点
图1实际上是一个单管反激型变换器,它由自激振荡器,二次整流及稳压反馈回路组成。
(1)自激振荡器
图2示出自激振荡器电路部分。实验发现此振荡器正反馈系数极强,当VI为30V时便起振,随着VI升高到80V左右,VO1在额定负载下很快达到设计值110V,如果不小心再提升VI,则会立即烧管。在实用上由于加入C912,Q901~Q903等稳压反馈回路,它们同时分流了一部分Q904的激励电流,从而保证了该电路稳定地工作在220VAC±10%输入电压范围内。如果要改在115VAC工作,则首先要将偏置电阻R913适当减少,以保证Q904有足够起振和负载能力。
(2)稳压反馈机理
这里有三个稳压反馈机理存在,它们是:
①变压器初级稳压绕组N3的作用。当输出电压VO1升高时,N3的感应电动势也升高,经过D901,C910整流滤波后引起Q902Vb下降,Q902,Q903提前导通,C912的负压并在Q904基极上,促使ton变小,抵消了VO1的升高,但由于C910存在,这是一个慢调整过程。
②变压器反馈绕组N2的作用。当输出电压VO1升高时,N2的感应电动势也升高,使C912上的充电电压略有提升,也会引起Q902Ve升高,其效果也促使ton变小,VO1下降。
③R902,R905,C909的作用。这是一个快速的一周接着一周的稳压过程。当VO1升高时,锯齿形初级电流峰值加大,在R902上生成的负向锯齿形电压更负,并通过R905,C909支路耦合到Q902基极,使Vb下降(见图3)。当Vb降到低于Ve约0.7V时,Q902,Q903提前导通,ton变小,有效地补偿VO1的升高。
3 电路修改过程和实验结果
(1)按照输入范围为100V~130VAC供电的要求,重新设计开关变压器,其步骤如下:
●确定最大和最小直流输入电压VImax,VImin:
其中系数0.93,0.89是考虑桥式整流二极管以及输入槽路中的损耗而加入的。
●确定输出功率PO:
因已知次级第一绕组输出为:
VO1=106V,IO1=0.58A
第二绕组输出为:
VO2=13V,IO2=0.5A
所以
PO=106×0.58+13×0.5=61.5+6.5≈68W
●确定输入功率Pi:
假定效率η=80%,则有Pi=PO/η=85W
●选定最低工作频率fmin及最大占空比Dmax
选fmin=22kHzDmax=0.47
●求初级电流峰值I1p
I1p=(2Po)/[(Vlmin)×(Dmax)]=(2×68)/(125×0.47)=2.3A
●求初级电感值Lp
Lp=(Vlmin×Dmax)/(Ilp)×(fmin)=(125×0.47)/(2.3×22×103)=1.16mH
●确定磁芯型号
选EC42,磁材用PC30,查相关手册得知其磁芯截面积Se=1.83cm2,窗口面积S=2.0cm2,该磁芯可允许的最大输出功率为
Pomax=[(Se)/(0.2)] 2=(1.83/0.2) 2=83.7W
可见应用在本例PO=68W是足够的。
●求初级主绕组匝数N1
N1={(Lp×Ilp)/Se×[(BS-BR)/2]}×10 8
={(1.16×10 -3×2.3)/1.83×[(3900-300)/2]}×10 8
=81匝
式中:BS为在100℃时最大饱和磁通密度,BS=3900Gs
BR为在100℃时剩磁,查资料BR应为600Gs。考虑磁芯需要加入空气隙以防止磁芯饱和,此时的BR值会大为减少,假定加空气隙后的剩磁为300Gs(即原值1/2)。
●求初级反馈绕组匝数N2
N2=V2/(VImin×N1)×(toff/ton)=(5.5/125)×81×[(1-0.47)/0.47]=4.02匝
取N2=4匝
●求初级稳压绕组匝数N3
N3=N3/(VImin×N1)×toff/ton=22/125×81×[(1-0.47)/0.47]=16.1匝
取N3=16匝
●求次级主输出(高压)绕组的匝数N4
N4=Vo1/(VImin×N1)×toff/ton=106/125×81×[(1-0.47)/0.47]=77.4匝
取N4=77匝
●求次级辅助输出(伴音)绕组的匝数N5
N5=(Vo2/VImin)×N1×(toff/ton)=(13/125)×81×(0.53/0.47)=9.5匝
取N5=10匝
基于上述的计算得出新开关变压器初步数据,但经试验后,发现次级输出电压过高,后来将次级主输出(高压)绕组的匝数N4减到72匝,N5相应减到9匝,磁芯空隙为1.3mm(其他不变),则获得很满意的效果。
(2)在新开关变压器的基础上,重新调整元件数值如表1所示。
表1元器件参数调整值对照
元件号 |
原值 |
现在值 |
元件号 |
原值 |
现在值 |
R902 |
2.2Ω/2W |
1.0Ω/2W |
R913 |
330k/1W |
120k/1W |
R904 |
3.3k |
2.2k |
R914 |
0.33/2W |
0.12Ω/2W |
R906 |
8.2k |
4.7k |
R901 |
2.2/5W |
1.0Ω/5W |
R907 |
1.8k |
6.0k |
C905 |
220μF/400V |
330μF/250V |
R908 |
10k |
3.9k |
ZD901 |
8.2V |
5.6V |
R912 |
27Ω/2W |
12Ω/2W |
其它元器件不变 |
(3)考虑到STANDBY功耗要小于6W的要求,为此加入一个小的115V/10V辅助变压器T902,由它整流后单独向机内微处理器提供+5V直流电压。在STANDBY期间,开关电源由输入端继电器断开供电,只有+5V辅助电源在工作,从而大大减小STANDBY功耗。
新的115VAC供电的开关电源电路如图4所示,对此电源的测试结果如下:
●测试负载:20″彩色电视机
●输入市电范围:100V~130VAC
●次级直流输出:VO1=106V/0.53A,用于高压行包等部分的供电。
VO2=13V/0.3A,用于伴音部分的供电。
●辅助电源直流输出:5V/0.1A,用于微处理器及继电器控制电路供电。
●输入电压调整率:当输入市电由100V→130V时,ΔVO1=1.2V
●负载变化调整率:当画面由白场转换为黑场时(即IO1由0.53A→0.24A),ΔVO1=2.6V,但从面画看,切换过程很迅速、稳定,画面大小基本无改变,是可以接受的。
●画音抖动现象:不明显,可接受。
●开关工作频率:21.7kHz~29.0kHz
●开关电源效率:η=81%
●STANBY功耗:4W(决定于辅助电源)
4 电源调整小结
开关电源是一门实践性很强的学科,设计之初可根据经验及一般性原理进行,但真正解决问题还需要实验调整。在调整中遇到的现象是错综复杂的,此时要抓主要矛盾,定出调整的先后步骤。在本例中,调整步骤如下:
(1)在规定的输入/输出条件下,先调整振荡开关管Q904使之具有足够的功率输出。方法是逐步减小R912及R913以增强管子增益及电路正反馈系数,测试初级电流I1P要足够大,因为只有足够大的I1P才能在较低的直流输入电压下驱动负载。
(2)调整稳压控制支路Q901,Q902的周边电阻,使Q902在ton时处于截止与临界放大状态之间,以增加对外来变化的反应灵敏度。
(3)加入R902,R905,C909限流反馈支路,进一步增强稳压特性。
(4)减小R901值以适应大电流输入,同时加入辅助电源电路。