| 网站首页 | 电源技术 | 电源资料 | 电源论坛 | 电源电路 | 电源人才 | 电源供求 | 留言本站 | 繁體中文 | 
[ ] 文章搜索:
您现在的位置: 电源开发网 >> 电源技术 >> 线路仿真 >> Matlab仿真 >> 正文
开关电源的环路设计及仿真
http://www.dykf.com  2014-1-5  电源开发网           ★★★

      1 基本理论

  开关电源的输出电压Vo是由一个控制电压Vc来控制的,即由Vc与锯齿波信号比较,产生PWM波形。根据锯齿波产生的方式不同,开关电源的控制方式可分为电压型控制和电流型控制。电压型的锯齿波是由芯片内部产生的,如LM5025,电流型的锯齿波是输出电感的电流转化成电压波形得到的,如UC3843。对于反激电路,变压器原边绕组的电流就是产生锯齿波的依据。

  输出电压Vo与控制电压Vc的比值称为未补偿的开环传递函数Tu,Tu=Vo/Vc。一般按频率的变化来反映Tu的变化,即Bode图。

  电压型控制的电源其Tu是双极点,以非隔离的BUCK为例,形式为:

  电流型控制的电源其Tu是单极点,以非隔离的BUCK为例,形式为:

  各种电路的未补偿的开环传递函数Tu可以从资料中找到。本讲座的目的是提供一种直观的环路设计手段。

  2 计算机仿真开关电源未补偿的开环传递函数Tu

  2.1 开关平均模型

  开关电源的各个量经平均处理后,去掉高频开关分量,得到低频(包括直流)的分量。开关电源的建模、静态工作点、反馈设计、动态分析等都是基于平均模型基础之上的。若要得到实际的工作波形,应按实际电路进行时域仿真(Time Transient Analysis)。

  将开关电路中的开关器件经平均化处理后,就得到开关平均模型,用开关平均模型可以搭建各种电路。

  以下是几个开关电源的平均模型仿真例子,从电路波形中看不到开关量,只是平均量,比如电感中流过的电流是实际电感中的电流平均值,电容两端的电压是实际电容两端电压的平均值等等。

  2.1.1 CCM BUCK(连续模式BUCK) 

  先直流扫描Vc,得到所需的输出电压,即得到了电路的静态工作点。然后交流扫描,得到Tu的Bode图。Tu为双极点。此处Vc等同于占空比d。

  2.1.2 DCM BUCK(断续模式BUCK) 

  按以上方法得到Tu,在DCM下,Tu变成单极点函数。模型CCM-DCM即可用于连续模式,也可用于断续模式。此处Vc仍等同于占空比d。

  2.1.3 CCM BOOST(连续模式BOOST)

  可以用模型搭建各种电路,如连续模式BOOST

  此处采用CCM-DCM模型可能仿真不收敛,为使仿真更好地收敛,建议什么电路模式采用对应模型。此处Vc也等同于占空比d。

  2.1.4 Flyback  

  n是变压器变比,原边比副边;L是变压器原边电感量。此处V6等同于d。

  2.2 受反馈电压控制的仿真

  实际电路中,占空比d的产生主要有两种方法:电压控制和电流控制。仿真时,电压控制中d的产生方式如下:

  Vc是反馈回路的输出电压,GAIN的放大倍数等于锯齿波幅值的倒数,若锯齿波幅值为Vm,则GAIN=1/Vm。

  电流型控制中d的产生方式如下:

  同上,Vc是反馈回路的输出电压;IL是用于产生锯齿波的电流信号,例如在BUCK电路中是输出电感电流,在Flyback中是变压器原边电流;V1是使电流上升的电压,V2是使电流下降时的电压;占空比d及d2是输出变量。

  至此,我们可以得到控制电压Vc到输出电压Vo的传递函数Tu。下面是几个仿真Tu的例子。

 

  2.2.1 电压型控制的CCM BUCK

  上述几个例子中加入GAIN就变成电压型控制的仿真电路了。

  2.2.2 电流型控制的CCM BUCK

  电流互感器将输出电感的电流信号变成电压信号IL,产生锯齿波,模型CPM将控制电压Vc与锯齿波比较产生占空比d的PWM波。MOS开通时,L1中的电流上升,使其电流上升的电压V1是Vg-Vo;Mos关断时,Vo加在L1上,使其电流下降的低电压V2=Vo。参数Rs是检流电阻,mva是斜坡补偿的斜率,单位是V/S,L是输出电感,fs是开关频率。

2.2.3 带变压器隔离的电流型BUCK电路 

  由于电路带变压器,所以平均开关模型也要用带变压器的模型CCM-T(带变压器的电流连续模式的模型)。参数Rs是原边检流电阻,n是变压器变比(原边:副边),mva是斜坡补偿的斜率,单位是V/S。

  2.3 仿真实例   实际电路中,选用不同的控制芯片,控制电压Vc的产生方式是不同的。以下是几个我们在工作中经常用到的几种控制芯片的仿真实例。

  2.3.1 带变压器隔离的电流型CCM(UC3843) 

  UC3843-1

  UC3843自带的运放归为反馈回路,运放输出的电压作为控制电压Vc。V9芯片内部的两个二极管压降,GAIN的放大倍数等于芯片内的电阻分压。

  此电路采用电流互感器采样原边电流,对于如下的采样电路,Rs=R/n,n是电流互感器的匝比(n:1)。 

  UC3843的斜率补偿,对于下图电路,补偿斜率 (V/s) 

  2.3.2 带隔离和电压前馈的电压型CCM(LM5025) 

LM5025-1

  V6对应于芯片内部反馈信号的1V压降,R、C为产生锯齿波的参数。

  2.3.3准谐振反激电路 (UCC28600) 

  UCC28600

  有时候用DC扫描来找静态工作点时,往往不收敛,此时可以预先算出Vc值,然后用偏置点扫描(bias point)来得到静态工作点。为改善收敛性,可以在关键点加NOTESET或IC,两者的区别是:NOTESET只是给定某点地初始电压,在偏置点扫描后,该点电压可能会变化;IC是将某点电压固定住,偏置点扫描后保持不变。上图中Rs是原边检流电阻,eff是电源效率,Ctot是MOS管的DS端电容。按准谐振反激电路的特点,占空比d、原边电流峰值Ip、开关频率fs都由模型算出,不用给定。

[1] [2] 下一页

来源:本站原创  作者:佚名  点击:  录入:admin
  • 上一篇文章:

  • 下一篇文章: 没有了
  • 收藏此页】【字体: 】【打印此文】【关闭窗口
    ※相关链接※
    没有相关文章
    网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!) 发表评论
    专 题 栏 目
    推 荐 图 书
    热 门 文 章
    热 门 下 载
    热 门 电 路
    论 坛 推 荐
    精 彩 广 告

    关于本站 - 广告服务 - 联系我们 - 版权申明 - 网站地图 - RSS订阅 - 友情链接 - -
    Copyright@2004-2014 ◆电源开发网◆ All Rights Reserved